Control of Stochastic Boundary Coverage by Multirobot Systems
نویسندگان
چکیده
This technical brief summarizes and extends our recently introduced control framework for stochastically allocating a swarm of robots among boundaries of circular regions. As in the previous work, a macroscopic model of the swarm population dynamics is used to synthesize robot control policies that establish and maintain stable predictable team sizes around region boundaries. However, this extension shows that the control strategy can be implemented with no robot-torobot communication. Moreover, target team sizes can vary across different types of regions, where a region’s type is a subjective characteristic that only needs to be detectable by each individual robot. Thus, regions of one type may have a higher equilibrium team size than regions of another type. In other work that predicts and controls stochastic swarm behaviors using macroscopic models, the equilibrium allocations of the swarm are sensitive to changes in the mean robot encounter rates with objects in the environment. Thus, in those works, as the swarm density or number of objects changes, the control policies on each robot must be retuned to achieve the desired allocations. However, our approach is insensitive to changes in encounter rate and therefore requires no retuning as the environment changes. In this extension, we validate these claims and show how the convergence rate to the target equilibrium allocations can be controlled in swarms with a sufficiently large free-robot population. Furthermore, we demonstrate how our framework can be used to experimentally measure the rates of robot encounters with occupied and unoccupied sections of region boundaries. Thus, our method can be viewed both as an encounter-rate-independent allocation strategy as well as a tool for accurately measuring encounter rates when using other swarm control strategies that depend on them. [DOI: 10.1115/1.4028353]
منابع مشابه
Numerical Solution of Optimal Heating of Temperature Field in Uncertain Environment Modelled by the use of Boundary Control
In the present paper, optimal heating of temperature field which is modelled as a boundary optimal control problem, is investigated in the uncertain environments and then it is solved numerically. In physical modelling, a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem. Controls are implemented ...
متن کاملMinefield Mapping Using Cooperative Multirobot Systems
This paper presents a team-theoretic approach to cooperative multirobot systems. The individual actions of the robots are controlled by the Belief-Desire-Intention model to endow the robots with the know-how needed to execute these actions deliberately. The cooperative behaviors between the heterogeneous robots are governed by the Team-Log theory to endow all the robots in the team with the kno...
متن کاملDelay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays
In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...
متن کاملDesign, Control, and Applications of Real-World Multirobot Systems
The field of multiagent robotics has recently reached a level of maturity in that systems are beginning to transition from proof-of-concept laboratory environments to deployed real-world systems. When we started planning for this special issue of IEEE Robotics & Automation Magazine in the early spring of 2007, we hoped to capture this exciting development trend. With a lineup of six strong arti...
متن کاملBehaviour of Multiagent System with Defined Goal
The subject of this work is the area of multiagent and multirobot systems focusing on their behaviour in the field of terrain exploration. The main goal is to design the multirobot system which is able to complete exploration task with the possibility of any robot failure. The proposed techniques consider the inaccuracies and errors arising in the system. In paper is described the design, as we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014